星际烧包女王 150

小说:星际烧包女王 作者:鱼香蹂丝 更新时间:2024-08-19 12:51:55 源网站:平板电子书
  从孟德尔定律的发现到现在,一百多年来人们对基因的认识在不断地深化。

  1866年,奥地利学者G.J.孟德尔在他的豌豆杂交实验论文中,用大写字母A、B等代表显性性状如圆粒、子叶黄色等,用小写字母a、b等代表隐性性状如皱粒、子叶绿色等。他并没有严格地区分所观察到的性状和控制这些性状的遗传因子。但是从他用这些符号所表示的杂交结果来看,这些符号正是在形式上代表着基因,而且至今在遗传学的分析中为了方便起见仍沿用它们来代表基因。

  20世纪初孟德尔的工作被重新发现以后,他的定律又在许多动植物中得到验证。1909年丹麦学者W.L.约翰森提出了基因这一名词,用它来指任何一种生物中控制任何性状而其遗传规律又符合于孟德尔定律的遗传因子,并且提出基因型和表现型这样两个术语,前者是一个生物的基因成分,后者是这些基因所表现的性状。

  1910年美国遗传学家兼胚胎学家T.H.摩尔根在果蝇中发现白色复眼 (white eye,W)突变型,首先说明基因可以发生突变,而且由此可以知道野生型基因W 具有使果蝇的复眼发育成为红色这一生理功能。1911年摩尔根又在果蝇的 X连锁基因白眼和短翅两品系的杂交子二代中,发现了白眼、短翅果蝇和正常的红眼长翅果蝇,首先指出位于同一染色体上的两个基因可以通过染色体交换而分处在两个同源染色体上。交换是一个普遍存在的遗传现象,不过直到40年代中期为止,还从来没有发现过交换发生在一个基因内部的现象。因此当时认为一个基因是一个功能单位,也是一个突变单位和一个交换单位。

  40年代以前,对于基因的化学本质并不了解。直到1944年 O.T.埃弗里等证实肺炎双球菌的转化因子是DNA,才首次用实验证明了基因是由DNA构成。

  1955年S.本泽用大肠杆菌T4噬菌体作材料,研究快速溶菌突变型Ⅱ的基因精细结构,发现在一个基因内部的许多位点上可以发生突变。并且可以在这些位点之间发生交换,从而说明一个基因是一个功能单位,但并不是一个突变单位和交换单位,因为一个基因可以包括许多突变单位(突变子)和许多重组单位(重组子)(见互补作用)。

  1969年J.夏皮罗等从大肠杆菌中分离到乳糖操纵子。并且使它在离体条件下进行转录,证实了一个基因可以离开染色体而独立地发挥作用,于是颗粒性的遗传概念更加确立。随着重组DNA技术和核酸的顺序分析技术的发展,对基因的认识又有了新的发展,主要是发现了重叠的基因、断裂的基因和可以移动位置的基因。

  重叠基因是在1977年发现的。早在1913年A.H.斯特蒂文特已在果蝇中证明了基因在染色体上作线状排列。50年代对基因精细结构和顺反位置效应等研究的结果也说明基因在染色体上是一个接着一个排列而并不重叠。但是1977年F.桑格在测定噬菌体ΦX174的DNA的全部核苷酸序列时,却意外地发现基因D中包含着基因E。基因E的第一个密码子(见遗传密码)从基因D的中央的一个密码子TAT的中间开始,因此两个部分重叠的基因所编码的两个蛋白质非但大小不等,而且氨基酸也不相同。在某些真核生物病毒中也发现有重叠基因。

  断裂的基因也是在1977年发现的,它是内部包含一段或几段最后不出现在成熟的mRNA中的片段的基因。这些不出现在成熟的mRNA中的片段称为内含子,出现在成熟的mRNA中的片段则称为外显子。例如下面这一基因,有三个外显子和两个内含子。在几种哺乳动物的核基因、酵母菌的线粒体基因以及某些感染真核生物的病毒中都发现了断裂的基因。内含子的功用以及转录后的加工机制是真核生物分子遗传学的一个吸引人的课题。

  功能、类别和数目到目前为止在果蝇中已经发现的基因不下于1000个,在大肠杆菌中已经定位的基因大约也有1000个,由基因决定的性状虽然千差万别,但是许多基因的原初功能却基本相同。

  1945年G.W.比德尔通过对脉孢菌的研究。提出了一个基因一种酶假设,认为基因的原初功能都是决定蛋白质的一级结构(即编码组成肽链的氨基酸序列)。这一假设在50年代得到充分的验证。基因变异是指基因组DNA分子发生的突然的可遗传的变异。从分子水平上看,基因变异是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种稳定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做变异基因。于是后代的表现中也就突然地出现祖先从未有的新性状。例如英国女王维多利亚家族在她以前没有发现过血友病的病人,但是她的一个儿子患了血友病。成了她家族中第一个患血友病的成员。后来,又在她的外孙中出现了几个血友病病人。很显然,在她的父亲或母亲中产生了一个血友病基因的突变。这个突变基因传给了她,而她是杂合子。所以表现型仍是正常的,但却通过她传给了她的儿子。基因变异的后果除如上所述形成致病基因引起遗传病外,还可造成死胎、自然流产和出生后夭折等,称为致死性突变;当然也可能对人体并无影响,仅仅造成正常人体间的遗传学差异;甚至可能给个体的生存带来一定的好处。

  目前,由多国科学家参与的“人类基因组计划”。正力图在21世纪初绘制出完整的人类染色体排列图。众所周知,染色体是DNA的载体,基因是DNA上有遗传效应的片段,构成DNA的基本单位是四种碱基。由于每个人拥有30亿对碱基,破译所有DNA的碱基排列顺序无疑是一项巨型工程。与传统基因序列测定技术相比。基因芯片破译人类基因组和检测基因突变的速度要快数千倍。

  基因芯片的检测速度之所以这么快,主要是因为基因芯片上有成千上万个微凝胶,可进行并行检测;同时,由于微凝胶是三维立体的。它相当于提供了一个三维检测平台,能固定住蛋白质和DNA并进行分析。

  美国正在对基因芯片进行研究,已开发出能快速解读基因密码的“基因芯片”,使解读人类基因的速度比目前高1000倍。

  通过使用基因芯片分析人类基因组,可找出致病的遗传基因。癌症、糖尿病等。都是遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出最终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染。利用基因芯片分析遗传基因,将使10年后对糖尿病的确诊率达到50%以上。

  未来人们在体检时,由搭载基因芯片的诊断机器人对受检者取血,转瞬间体检结果便可以显示在计算机屏幕上。利用基因诊断,医疗将从千篇一律的“大众医疗”的时代,进步到依据个人遗传基因而异的“定制医疗”的时代。

  基因重组是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。1974年波兰斯吉巴尔斯基(Waclaw Szybalski)称基因重组为合成生物学。1978年他在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。细胞结构和细胞器中,具有双层膜有线粒体、叶绿体,具有单层膜的有内质网、高尔基体、溶酶体、液泡。它们都由生物膜构成,这些细胞器膜和细胞膜、核膜等结构,共同构成细胞的生物膜系统。

  细胞的生物膜系统在细胞的生命活动中起着极其重要的作用。

  首先,细胞膜不仅使细胞具有一个相对稳定的内环境,同时在细胞与环境之间进行物质运输、能量转换和信息传递的过程中也起着决定性的作用。[4]

  第二,细胞的许多重要的化学反应都在生物膜上进行。

  细胞内的广阔的膜面积为酶提供了大量的附着位点,为各种化学反应的顺利进行创造了有利条件。

  第三,细胞内的生物膜把细胞分隔成一个个小的区室。这样就使得细胞内能够同时进行多种化学反应,而不会相互干扰,保证了细胞的生命活动高效、有序地进行。

  基因疗法 折叠

  基因疗法是基于对遗传物质即核酸的应用。广义而言,人为地有目的地对人体DNA或RNA进行处理。实际应用上,目前主要在于三个方面。一是跟踪体内细胞。二是治疗疾病,三是预防疾病。

  基因突变 折叠

  基因突变(gene mutation)一个基因内部可以遗传的结构的改变 。又称为点突变,通常可引起一定的表型变化 。广义的突变包括染色体畸变。狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。

  基因调控 折叠

  生物体内控制基因表达的机制。基因表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在3个水平上,即:①DNA水平上的调控、转录控制和翻译控制;②微生物通过基因调控可以改变代谢方式以适应环境的变化。这类基因调控一般是短暂的和可逆的;③多细胞生物的基因调控是细胞分化、形态发生和个体发育的基础,这类调控一般是长期的,而且往往是不可逆的。基因调控的研究有广泛的生物学意义,是发生遗传学和分子遗传学的重要研究领域。

  基因环保 折叠

  基因芯片在环保方面也大有可为。基因芯片可高效地探测到由微生物或有机物引起的污染,还能帮助研究人员找到并合成具有解毒和消化污染物功能的天然酶基因。这种对环境友好的基因一旦被发现,研究人员将把它们转入普通的细菌中,然后用这种转基因细菌清理被污染的河流或土壤。

  基因武器 折叠

  基因武器(geic weapon),也称遗传工程武器或DNA武器。它运用先进的遗传工程这一新技术。用类似工程设计的办法,按人们的需要通过基因重组,在一些致病细菌或病毒中接入能对抗普通疫苗或药物的基因,或者在一些本来不会致病的微生物体内接入致病基因而制造成生物武器。它能改变非致病微生物的遗传物质。使其产生具有显著抗药性的致病菌,利用人种生化特征上的差异,使这种致病菌只对特定遗传特征的人们产生致病作用,从而有选择地消灭敌方有生力量。

  基因计算 折叠

  DNA分子类似“计算机磁盘”,拥有信息的保存、复制、改写等功能。将螺旋状的DNA的分子拉直。其长度将超过人的身高,但若把它折叠起来,又可以缩小为直径只有几微米的小球。因此,DNA分子被视为超高密度、大容量的分子存储器。

  基因芯片经过改进,利用不同生物状态表达不同的数字后还可用于制造生物计算机。基于基因芯片和基因算法,未来的生物信息学领域,将有望出现能与当今的计算机业硬件巨头――英特尔公司、软件巨头――微软公司相匹敌的生物信息企业。

  基因识别和亲子鉴定 折叠

  由于人类基因具有唯一性(双胞胎除外),目前法医学上用途最广的方面就是个体识别和亲子鉴定。

  在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术。DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。

  基因检测 折叠

  基因检测是通过血液、其他体液、或细胞对DNA进行检测的技术。基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检测引起遗传性疾病的突变基因。目前应用最广泛的基因检测是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。目前有1000多种遗传性疾病可以通过基因检测技术做出诊断。

  基因对大脑的影响 折叠

  加州大学洛杉矶分校的大脑图谱研究人员首次创造出显示个体基因如何影响他们的大脑结构和智力水平的图像。这项发现发表于2001年11月5日的《自然神经科学》(Natue Neuoscience)杂志上,为父母如何向后代传递个性特征和认知能力以及大脑疾病如何影响整个家族提供了令人兴奋的新见解。

  研究小组发现大脑前沿部分灰质的数量是由个体父母的遗传组成决定的,根据智力测验的分数的衡量,它与个体的认知能力有着极大的关联。

  更为重要的是,这些是第一批揭开正常的遗传差异是如何影响大脑结构和智力的图像。

  大脑控制语言和阅读技巧的区域在同卵双生的双胞胎中本质上是一样的。因为他们享有完全一样的基因,而普通的兄弟姐妹只显示60%的正常的大脑差异。

  家庭成员大脑中的这种紧密的结构相似性有助于解释大脑疾病包括精神分裂症和一些类型的痴呆症等为什么会在家庭中蔓延。

  家庭成员的大脑语言区也同样极其相似。家庭成员最为相似的大脑区域可能特别易受家族遗传病攻击,包括各种形式的精神分裂症和痴呆症等在内。

  科学家使用核磁共振成像技术来扫描一组20对基因完全相同的同卵双生的双胞胎,和20对一半基因相同的异卵双生的同性双胞胎。

  通过高速的超型计算机。他们创造出用不同色彩做标记的图像,图像可以显示大脑的哪些部位是由我们的遗传组成决定的。哪些部位更易受环境因素如学习和压力等的影响。

  为绘制出遗传对大脑影响的图谱,加州大学洛山矶分校的科学家们与芬兰国家公共卫生研究院和芬兰赫尔辛基大学合作,在一项国家计划中 ,芬兰研究人员跟踪了芬兰从1940到1957年间所有的同性双胞胎--共9500对。他们中有许多接受了大脑扫描和认知能力测试。

  通过分析78个不同的遗传标记,他们的遗传相似性被进一步证实。这些个体的DNA在同卵双生的双胞胎中完全吻合,异卵双生的双胞胎中一半吻合。

  最近的研究令人惊讶地显示许多认知技能是可遗传的,遗传对口头表达能力和空间感、反应时期、甚至一些个性特质如对压力的情绪反应等都有极大的影响。甚至在根据共同家庭环境对统计数据进行修正之后——通常这种共同环境趋向于使同一家庭成员更为相似——遗传关联依然存在。在这项研究以前,人们对个体基因型对个体大脑间广泛变异以及个体的认知能力有多大影响知之甚少。

  基因工程的应用 折叠

  生产领域 折叠

  人们可以利用基因技术,生产转基因食品.例如。科学家可以把某种肉猪体内控制肉的生长的基因植入鸡体内,从而让鸡也获得快速增肥的能力。但是,转基因因为有高科技含量, 怕吃了转基因食品中的外源基因后会改变人的遗传性状,比如吃了转基因猪肉会变得好动,喝了转基因牛奶后易患恋乳症等等。华中农业大学的张启发院士认为:“转基因技术为作物改良提供了新手段,同时也带来了潜在的风险。基因技术本身能够进行精确的分析和评估,从而有效地规避风险。对转基因技术的风险评估应以传统技术为参照。科学规范的管理可为转基因技术的利用提供安全保障。生命科学基础知识的科普和公众教育十分重要。”随着人类对基因研究的不断深入,发现许多疾病是由于基因结构与功能发生改变所引起的。科学家将不仅能发现有缺陷的基因,而且还能掌握如何进行对基因诊断、修复、治疗和预防,这是生物技术发展的前沿。这项成果将给人类的健康和生活带来不可估量的利益。所谓基因治疗是指用基因工程的技术方法,将正常的基因转如病患者的细胞中。以取代病变基因,从而表达所缺乏的产物,或者通过关闭或降低异常表达的基因等途径,达到治疗某些遗传病的目的。目前,已发现的遗传病有6500多种,其中由单基因缺陷引起的就有约3000多种。因此,遗传病是基因治疗的主要对象。 第一例基因治疗是美国在1990年进行的。当时,两个4岁和9岁的小女孩由于体内腺苷脱氨酶缺乏而患了严重的联合免疫缺陷症。科学家对她们进行了基因治疗并取得了成功。这一开创性的工作标志着基因治疗已经从实验研究过渡到临床实验。1991年,我国首例B型血友病的基因治疗临床实验也获得了成功。

  基因治疗的最新进展是即将用基因枪技术于基因治疗。其方法是将特定的DNA用改进的基因枪技术导入小鼠的肌肉、肝脏、脾、肠道和皮肤获得成功的表达。这一成功预示着人们未来可能利用基因枪传送药物到人体内的特定部位,以取代传统的接种疫苗。并用基因枪技术来治疗遗传病。

  目前,科学家们正在研究的是胎儿基因疗法。如果现在的实验疗效得到进一步确证的话,就有可能将胎儿基因疗法扩大到其它遗传病,以防止出生患遗传病症的新生儿。从而从根本上提高后代的健康水平。

  基因工程药物 折叠

  基因工程药物,是重组DNA的表达产物。广义的说,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物。在这方面的研究具有十分诱人的前景。

  基因工程药物研究的开发重点是从蛋白质类药物,如胰岛素、人生长激素、促红细胞生成素等的分子蛋白质,转移到寻找较小分子蛋白质药物。这是因为蛋白质的分子一般都比较大。不容易穿过细胞膜,因而影响其药理作用的发挥,而小分子药物在这方面就具有明显的优越性。另一方面对疾病的治疗思路也开阔了,从单纯的用药发展到用基因工程技术或基因本身作为治疗手段。

  现在,还有一个需要引起大家注意的问题,就是许多过去被征服的传染病,由于细菌产生了耐药性,又卷土重来。其中最值得引起注意的是结核病。据世界卫生组织报道,现已出现全球肺结核病危机。本来即将被消灭的结核病又死灰复燃,而且出现了多种耐药结核病。据统计,全世界现有17.22亿人感染了结核病菌,每年有900万新结核病人,约300万人死于结核病,相当于每10秒钟就有一人死于结核病。科学家还指出,在今后的一段时间里,会有数以百计的感染细菌性疾病的人将无药可治,同时病毒性疾病日益曾多,防不胜防。不过与此同时,科学家们也探索了对付的办法,他们在人体、昆虫和植物种子中找到一些小分子的抗微生物多肽,它们的分子量小于4000,仅有30多个氨基酸,具有强烈的广普杀伤病原微生物的活力,对细菌、病菌、真菌等病原微生物能产生较强的杀伤作用,有可能成为新一代的“超级抗生素”。除了用它来开发新的抗生素外,这类小分子多肽还可以在农业上用于培育抗病作物的新品种。。如果您喜欢这部作品,欢迎您来起点投推荐票、月票,您的支持,就是我最大的动力。手机用户请到阅读。)
为更好的阅读体验,本站章节内容基于百度转码进行转码展示,如有问题请您到源站阅读, 转码声明
八零电子书邀请您进入最专业的小说搜索网站阅读星际烧包女王,星际烧包女王最新章节,星际烧包女王 平板电子书!
可以使用回车、←→快捷键阅读
本站根据您的指令搜索各大小说站得到的链接列表,与本站立场无关
如果版权人认为在本站放置您的作品有损您的利益,请发邮件至,本站确认后将会立即删除。
Copyright©2018 八零电子书